Differentially separable extension of positive characteristic $p$

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separable Endomorphisms of Surfaces in Positive Characteristic

The structure of non-singular projective surfaces admitting non-isomorphic surjective separable endomorphisms is studied in the positive characteristic case. The case of characteristic zero is treated in [2], [16] (cf. [3]). Many similar classification results are obtained also in this case; on the other hand, some examples peculiar to the positive characteristic are given explicitly.

متن کامل

P. Bonacini HILBERT FUNCTIONS OF DECREASING TYPE IN POSITIVE CHARACTERISTIC

Let C be an integral curve in Pk , with k an algebraically closed field. In the main result of this paper we prove that the Hilbert function of its general plane section C ∩H is of decreasing type, extending to any characteristic a result proved in the case char k = 0 by Maggioni and Ragusa. Moreover, the proof given in this paper does not depend on the uniform position property. We also prove ...

متن کامل

HYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC

Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...

متن کامل

Algebraic Independence in Positive Characteristic -- A p-Adic Calculus

A set of multivariate polynomials, over a field of zero or large characteristic, can be tested for algebraic independence by the well-known Jacobian criterion. For fields of other characteristic p > 0, no analogous characterization is known. In this paper we give the first such criterion. Essentially, it boils down to a non-degeneracy condition on a lift of the Jacobian polynomial over (an unra...

متن کامل

In Positive Characteristic

We establish Noether’s inequality for surfaces of general type in positive characteristic. Then we extend Enriques’ and Horikawa’s classification of surfaces on the Noether line, the so-called Horikawa surfaces. We construct examples for all possible numerical invariants and in arbitrary characteristic, where we need foliations and deformation techniques to handle characteristic 2. Finally, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kyoto Journal of Mathematics

سال: 1991

ISSN: 2156-2261

DOI: 10.1215/kjm/1250519891